首页 >  商务服务 >  浦东 软件测试中心

浦东 软件测试中心

关键词: 浦东 软件测试中心 测评

2025.05.01

文章来源:

    3)pe可选头部有效尺寸的值不正确,(4)节之间的“间缝”,(5)可疑的代码重定向,(6)可疑的代码节名称,(7)可疑的头部***,(8)来自,(9)导入地址表被修改,(10)多个pe头部,(11)可疑的重定位信息,(12)把节装入到vmm的地址空间,(13)可选头部的sizeofcode域取值不正确,(14)含有可疑标志。存在明显的统计差异的格式结构特征包括:(1)无证书表;(2)调试数据明显小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics属性异常,(4)资源节的资源个数少于正常文件。生成软件样本的字节码n-grams特征视图,是统计了每个短序列特征的词频(termfrequency,tf),即该短序列特征在软件样本中出现的频率。先从当前软件样本的所有短序列特征中选取词频tf**高的多个短序列特征;然后计算选取的每个短序列特征的逆向文件频率idf与词频tf的乘积,并将其作为选取的每个短序列特征的特征值,,表示该短序列特征表示其所在软件样本的能力越强;**后在选取的词频tf**高的多个短序列特征中选取,生成字节码n-grams特征视图。:=tf×idf;tf(termfrequency)是词频,定义如下:其中,ni,j是短序列特征i在软件样本j中出现的次数,∑knk,j指软件样本j中所有短序列特征出现的次数之和。覆盖软件功能与性能的多维度检测方案设计与实施!浦东 软件测试中心

浦东 软件测试中心,测评

    所述生成软件样本的dll和api信息特征视图,是先统计所有类别已知的软件样本的pe可执行文件引用的dll和api信息,从中选取引用频率**高的多个dll和api信息;然后判断当前的软件样本的导入节里是否存在选择出的某个引用频率**高的dll和api信息,如存在,则将当前软件样本的该dll或api信息以1表示,否则将其以0表示,从而对当前软件样本的所有dll和api信息进行表示形成当前软件样本的dll和api信息特征视图。进一步的,所述生成软件样本的格式信息特征视图,是从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,形成当前软件样本的格式信息特征视图。进一步的,所述从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,是从当前软件样本的pe格式结构信息中确定存在特定格式异常的pe格式结构特征以及存在明显的统计差异的格式结构特征;所述特定格式异常包括:(1)代码从**后一节开始执行,(2)节头部可疑的属性,(3)pe可选头部有效尺寸的值不正确,(4)节之间的“间缝”,(5)可疑的代码重定向,(6)可疑的代码节名称,(7)可疑的头部***,(8)来自,(9)导入地址表被修改,(10)多个pe头部,(11)可疑的重定位信息,。软件产品软件检测报告数字化转型中的挑战与应对:艾策科技的经验分享。

浦东 软件测试中心,测评

    2)软件产品登记测试流程材料准备并递交------实验室受理------环境准备------测试实施------输出报告------通知客户------缴费并取报告服务区域北京、上海、广州、深圳、重庆、杭州、南京、苏州等**各地软件测试报告|软件检测报告以“软件质量为目标,贯穿整个软件生命周期、覆盖软件测试生命周期”的**测试服务模式,真正做到了“软件测试应该越早介入越好的原则”,从软件生命周期的每一个环节把控软件产品质量;提供软件产品质量度量依据,提供软件可靠性分析依据。软件成果鉴定测试结果可以作为软件类科技成果鉴定的依据。提供功能、性能、标准符合性、易用性、安全性、可靠性等专项测试服务。科技项目验收测试报告及鉴定结论,可以真实反映指标的技术水平和市场价值,有助于项目成交和产品营销。

    图2是后端融合方法的流程图。图3是中间融合方法的流程图。图4是前端融合模型的架构图。图5是前端融合模型的准确率变化曲线图。图6是前端融合模型的对数损失变化曲线图。图7是前端融合模型的检测混淆矩阵示意图。图8是规范化前端融合模型的检测混淆矩阵示意图。图9是前端融合模型的roc曲线图。图10是后端融合模型的架构图。图11是后端融合模型的准确率变化曲线图。图12是后端融合模型的对数损失变化曲线图。图13是后端融合模型的检测混淆矩阵示意图。图14是规范化后端融合模型的检测混淆矩阵示意图。图15是后端融合模型的roc曲线图。图16是中间融合模型的架构图。图17是中间融合模型的准确率变化曲线图。图18是中间融合模型的对数损失变化曲线图。图19是中间融合模型的检测混淆矩阵示意图。图20是规范化中间融合模型的检测混淆矩阵示意图。图21是中间融合模型的roc曲线图。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例**是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。从传统到智能:艾策科技助力制造业升级之路。

浦东 软件测试中心,测评

    步骤s2、将软件样本中的类别已知的软件样本作为训练样本,基于多模态数据融合方法,将训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入深度神经网络,训练多模态深度集成模型;步骤s3、将软件样本中的类别未知的软件样本作为测试样本,并将测试样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入步骤s2训练得到的多模态深度集成模型中,对测试样本进行检测并得出检测结果。进一步的,所述提取软件样本的二进制可执行文件的dll和api信息的特征表示,是统计当前软件样本的导入节中引用的dll和api;所述提取软件样本的二进制可执行文件的pe格式结构信息的特征表示,是先对当前软件样本的二进制可执行文件进行格式结构解析,然后按照格式规范提取**该软件样本的格式结构信息;所述提取软件样本的二进制可执行文件的字节码n-grams的特征表示,是先将当前软件样本件的二进制可执行文件转换为十六进制字节码序列,然后采用n-grams方法在十六进制字节码序列中滑动,产生大量的连续部分重叠的短序列特征。进一步的,采用3-grams方法在十六进制字节码序列中滑动产生连续部分重叠的短序列特征。进一步的。性能基准测试GPU利用率未达理论最大值67%。第三方软件系统安全检测报价

如何选择适合企业的 IT 解决方案?浦东 软件测试中心

    并将测试样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入步骤s2训练得到的多模态深度集成模型中,对测试样本进行检测并得出检测结果。实验结果与分析(1)样本数据集选取实验评估使用了不同时期的恶意软件和良性软件样本,包含了7871个良性软件样本和8269个恶意软件样本,其中4103个恶意软件样本是2011年以前发现的,4166个恶意软件样本是近年来新发现的;3918个良性软件样本是从全新安装的windowsxpsp3系统中收集的,3953个良性软件样本是从全新安装的32位windows7系统中收集的。所有的恶意软件样本都是从vxheavens网站中收集的,所有的样本格式都是windowspe格式的,样本数据集构成如表1所示。表1样本数据集类别恶意软件样本良性软件样本早期样本41033918近期样本41663953合计82697871(2)评价指标及方法分类性能主要用两个指标来评估:准确率和对数损失。准确率测量所有预测中正确预测的样本占总样本的比例,*凭准确率通常不足以评估预测的鲁棒性,因此还需要使用对数损失。对数损失(logarithmicloss),也称交叉熵损失(cross-entropyloss),是在概率估计上定义的,用于测量预测类别与真实类别之间的差距大小。浦东 软件测试中心

点击查看全文
推荐文章