首页 >  手机通讯 >  北京c语音识别

北京c语音识别

关键词: 北京c语音识别 语音识别

2024.02.03

文章来源:

    语音识别包括两个阶段:训练和识别。不管是训练还是识别,都必须对输入语音预处理和特征提取。训练阶段所做的具体工作是收集大量的语音语料,经过预处理和特征提取后得到特征矢量参数,通过特征建模达到建立训练语音的参考模型库的目的。而识别阶段所做的主要工作是将输入语音的特征矢量参数和参考模型库中的参考模型进行相似性度量比较,然后把相似性高的输入特征矢量作为识别结果输出。这样,终就达到了语音识别的目的。语音识别的基本原理是现有的识别技术按照识别对象可以分为特定人识别和非特定人识别。特定人识别是指识别对象为专门的人,非特定人识别是指识别对象是针对大多数用户,一般需要采集多个人的语音进行录音和训练,经过学习,达到较高的识别率。基于现有技术开发嵌入式语音交互系统,目前主要有两种方式:一种是直接在嵌入式处理器中调用语音开发包;另一种是嵌入式处理器外扩展语音芯片。第一种方法程序量大,计算复杂,需要占用大量的处理器资源,开发周期长;第二种方法相对简单,只需要关注语音芯片的接口部分与微处理器相连,结构简单,搭建方便,微处理器的计算负担降低,增强了可靠性,缩短了开发周期。本文的语音识别模块是以嵌入式微处理器为说明。怎么构建语音识别系统?语音识别系统构建总体包括两个部分:训练和识别。北京c语音识别

    没有任何一个公司可以全线打造所有的产品。语音识别的产业趋势当语音产业需求四处开花的同时,行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。青海语音识别器语音识别技术开始与其他领域相关技术进行结合,以提高识别的准确率,便于实现语音识别技术的产品化。

    语音识别的原理❈语音识别是将语音转换为文本的技术,是自然语言处理的一个分支。前台主要步骤分为信号搜集、降噪和特征提取三步,提取的特征在后台由经过语音大数据训练得到的语音模型对其进行解码,终把语音转化为文本,实现达到让机器识别和理解语音的目的。根据公开资料显示,目前语音识别的技术成熟度较高,已达到95%的准确度。然而,需要指出的是,从95%到99%的准确度带来的改变才是质的飞跃,将使人们从偶尔使用语音变到常常使用。以下我们来举例,当我们说“jin天天气怎么样”时,机器是怎么进行语音识别的?❈2语义识别❈语义识别是人工智能的重要分支之一,解决的是“听得懂”的问题。其大的作用是改变人机交互模式,将人机交互由原始的鼠标、键盘交互转变为语音对话的方式。此外,我们认为目前的语义识别行业还未出现垄断者,新进入的创业公司仍具备一定机会。语义识别是自然语言处理(NLP)技术的重要组成部分。NLP在实际应用中大的困难还是语义的复杂性,此外,深度学习算法也不是语义识别领域的优算法。但随着整个AI行业发展进程加速,将为NLP带来长足的进步从1996年至今,国内至今仍在运营的人工智能公司接近400家。

    使处理后的信号更完全地反映语音的本质特征提取。智能语音系统的未来实现人机之间的自由语音交互将成为未来AI的发展趋势,新技术投入市场会带来一些热情,但有一定的改善空间。首先,智能语音市场需要对特定人群适当地改变特定的场景。现在人机交互在实时性、正确性等方面也需要提高。其次,语音输入的内容与各种专业知识相关,智能语音系统在理解人类语言的表面意义的基础上,认识到更深的意义,因此智能语音系统的知识图谱也是一大挑战,对输入输出、编译代码提出了很高的要求,语音识别技术利用高速发展的信息网,可以实现计算机全球网络和信息资源的共享,因此应用的系统有语音输入和控制系统、电销机器人、智能手机查询系统、智能家电和玩具等智能手机机器人以房地产、金融、电商、保险、汽车等都是电话销售行业的形式,改变着隐含的影响和我们的生活。因此,语言识别功能是非常有潜力的技术。我们在平时的生活中可以在很多地方使用它,可以方便我们的生活和工作,如智能手机、智能冰箱和空调、自动门、汽车导航、机器人控制、医疗实施、设备等。21世纪不能说是语音识别普及的时代,但语音识别产品和设备也以独特的魅力时代潮流,成为跟上时代的宠儿和焦点。语音识别的精度和速度取决于实际应用环境。

    即在解码端通过搜索技术寻找优词串的方法。连续语音识别中的搜索,就是寻找一个词模型序列以描述输入语音信号,从而得到词解码序列。搜索所依据的是对公式中的声学模型打分和语言模型打分。在实际使用中,往往要依据经验给语言模型加上一个高权重,并设置一个长词惩罚分数。语音识别本质上是一种模式识别的过程,未知语音的模式与已知语音的参考模式逐一进行比较,佳匹配的参考模式被作为识别结果。当今语音识别技术的主流算法,主要有基于动态时间规整(DTW)算法、基于非参数模型的矢量量化(VQ)方法、基于参数模型的隐马尔可夫模型(HMM)的方法、以及近年来基于深度学习和支持向量机等语音识别方法。站在巨人的肩膀上:开源框架目前开源世界里提供了多种不同的语音识别工具包,为开发者构建应用提供了很大帮助。但这些工具各有优劣,需要根据具体情况选择使用。下表为目前相对流行的工具包间的对比,大多基于传统的HMM和N-Gram语言模型的开源工具包。对于普通用户而言,大多数人都会知道Siri或Cortana这样的产品。而对于研发工程师来说,更灵活、更具专注性的解决方案更符合需求,很多公司都会研发自己的语音识别工具。(1)CMUSphinix是卡内基梅隆大学的研究成果。动态时间规整是一种用于测量可能随时间或速度变化的两个序列之间相似性的算法。深圳光纤数据语音识别标准

而这也是语音识别技术当前发展比较火热的原因。北京c语音识别

    那就每家都要建立自己云服务稳定,确保响应速度,适配自己所选择的硬件平台,逐项整合具体的内容(比如音乐、有声读物)。这从产品方或者解决方案商的视角来看是不可接受的。这时候就会催生相应的平台服务商,它要同时解决技术、内容接入和工程细节等问题,终达成试错成本低、体验却足够好的目标。平台服务并不需要闭门造车,平台服务的前提是要有能屏蔽产品差异的操作系统,这是AI+IOT的特征,也是有所参照的,亚马逊过去近10年里是同步着手做两件事:一个是持续推出面向终端用户的产品,比如Echo,EchoShow等;一个是把所有产品所内置的系统Alexa进行平台化,面向设备端和技能端同步开放SDK和调试发布平台。虽然GoogleAssistant号称单点技术更为,但从各方面的结果来看Alexa是当之无愧的为的系统平台,可惜的是Alexa并不支持中文以及相应的后台服务。国内则缺乏亚马逊这种统治力的系统平台提供商,当前的平台提供商分为两个阵营:一类是以百度、阿里、讯飞、小米、腾讯为的传统互联网或者上市公司;一类是以声智等为的新兴人工智能公司。新兴的人工智能公司相比传统公司产品和服务上的历史包袱更轻,因此在平台服务上反倒是可以主推一些更为面向未来、有特色的基础服务。

     北京c语音识别

点击查看全文
推荐文章