首页 >  医药健康 >  DNA病毒序列测序进化分析原理

DNA病毒序列测序进化分析原理

关键词: DNA病毒序列测序进化分析原理 病毒全基因组测序

2024.09.11

文章来源:

    全基因组测序需要要注意的事项包括:全基因组测序是对未知基因组序列的物种进行个体的基因组测序。技术路线:提取基因组DNA,然后随机打断,电泳回收所需长度的DNA的片段(),加上接头,进行DNA簇(Cluster)制备,后利用Paired-End(Solexa)或者Mate-Pair(SOLiD)的方法对插入片段进行测序。然后对测得的序列组装成Contig,通过Paired-End的距离可进一步组装成Scaffold,进而可组装成染色体等。组装效果与测序深度与覆盖度、测序质量等有关。常用的组装有:SOAPdenovo、Trimity、Abyss等。测序深度(Sequencingdepth)是指测序得到的碱基总量(bp)与基因组大小的比值,它是评价测序量的指标之一。测序深度与基因组覆盖度之间是一个正相关的关系,测序带来的错误率或假阳性结果会随着测序深度的提升而下降。测序的个体,如果采用的是双末端或Mate-Pair方案,当测序深度在50X~100X以上时,基因组覆盖度和测序错误率控制均得以保证,后续序列组装成染色体才能变得更容易与准确。 深度测序技术促进基因检测的普及。DNA病毒序列测序进化分析原理

DNA病毒序列测序进化分析原理,病毒全基因组测序

深度测序技术对经济市场的影响:未来社会的创新驱动将由信息技术向心理社会健康方面转移。可以预见,全球老年化社会到来后的经济主战场将是健康行业,而以基因测序预测健康和临床准确分型的市场将会越来越大。深度测序相关的经济市场有两个方面。一是测序仪器和技术相关的市场,二是测序应用市场的竞争。一个显见的例子是,近年来深度测序技术促进了对肺病的进一步认识和分型,更多的位点突变如ALK、ERCC1、MET、PI3K、RRM1等被陆续发现,多基因检测肺病致病驱动基因对医生准确选择靶向药物十分重要。以肺病中常见的EGFR突变型为例,对于敏感性基因突变(19Del+L858R),第1代靶向药物(如易瑞沙等)可以进行良好的调整和控制;但是对于耐药性基因突变(T790M),则需要第三代靶向药物(AZD9291)才有较好的临床效果。不久的将来,病症患者将获得更具个性化的药物,从而达到准确医疗。杭州病毒测序分析服务病毒基因组测序是疾病诊断、流行病学调查和宿主-病原关系研究的重要手段。

DNA病毒序列测序进化分析原理,病毒全基因组测序

RNA/DNA病毒测序对病毒基因组进行测序是快速了解病毒突变、毒力变化、病毒型别的有效方法。可以根据病毒基因组大小和类型,采用PCR、RT-PCR或shotgun测序法,对病毒的部分或全长基因组测序,结果准确可靠。服务标准:测出的序列准确性在99%以上;病毒全基因组测序测出序列在总基因组大小95%以上;数小于5个;Shotgun测序的覆盖度在6以上;PCR和RT-PCR测序达到2。服务说明:1、提供病毒DNA或RNA作为样品。2、PCR测序的DNA样品总量大于5μg,浓度大于20ng/μl。DNA无降解。3、Shotgun测序法的DNA样品总量大于20μg,浓度大于100ng/μl。DNA无降解。4、用RT-PCR和PCR测序法在提供参考序列时需同时提交样品部分序列与参考序列的比对文件,确保同源性在95%以上。

一直以来,病毒基因组测序都是疾病诊断、流行病学调查和宿主-病原关系研究的重要手段。病毒的全基因组测序以及对应的生物信息学分析方法是研究病毒进化、毒力因子变异、疫病爆发之间的关系、疫病传播途径、不同遗传变异的分布模式、疫病发生地理区域的基础。与传统Sanger测序相比,NGS技术的发展使得一个小的研究小组可以拥有大量病毒株的全基因组序列,测序成本也在逐步降低。由于NGS产生的数据量非常庞大,其序列拼接难度也随之增加。而且对于低浓度高复杂度的样本,研究者除了PCR外别无他法。而PCR方法往往具有偏好性,丢失的片段将为序列组装带来非常高的失败率。对于完全未知的样本,无法通过PCR进行富集,要鉴定其种类需要调用各种方法,逐个尝试,工作量之大,其效率之低,使得一个新的研究方法的出现及其必要。在探普生物进行病毒基因组测序是比较简单的。

DNA病毒序列测序进化分析原理,病毒全基因组测序

哪些应用场景需要对病毒的全基因组进行测序呢?在探普生物长时间运行过程中,我们接触到的对病毒的全基因组进行测序项目有比较丰富的应用场景。先,从事基因进化/疫苗/药品/抗体研制方向的研究的研究者一定会用到测序。这种场景一般是用密集的sanger测序监测某几个关键基因,搭载一定频率的全基因组测序。这样的组合省时省力省经费,同时能达到研究目的。此外,有的单位需要对传染病的病原进行流行病学监测和研究,如疾控/疫控中心、医院的传染病科室以及一些高校和研究所的相应课题组,可能需要对病毒的全基因组进行测序以后,结合其他上下游的研究数据,达到研究或者监测疫病的目的。测序覆盖度是反映测序随机性指标之一。江苏病毒全基因组二代测序原理

病毒全基因组测序具有的特点:专业化服务。DNA病毒序列测序进化分析原理

    二代测序是一种高通量测序技术,也被称为次代测序或高通量测序。与传统的Sanger测序技术相比,二代测序具有更快、更经济和更高效的特点。在二代测序中,DNA样本首先被打断成短片段。接下来,这些片段会通过特殊的方法进行扩增和连接,形成了所谓的文库(library)。文库中的DNA片段被固定在测序平台上,并由DNA多聚酶催化合成。为了同时进行大量测序,平台上存在许多DNA聚合酶和标记于不同碱基的特殊试剂。在测序过程中,每个碱基会被依次加入,同时放出一种特定的信号。这些信号被探测器捕捉并记录下来,通过计算机软件进行处理,将信号转化为原始DNA序列。整个测序过程是高度并行的,可以同时测序数百万个DNA片段。通过二代测序技术,我们可以快速、准确地测序整个基因组、转录组以及其他基因组学研究中的DNA片段。这种技术在生物医学研究、个体基因组学、农业基因组学等领域具有广泛的应用,例如研究疾病的发病机制、寻找基因变异与性状相关性、发现新的药物靶点等。二代测序的发展推动了基因组学、生物信息学和医学研究的飞速发展。它不仅加速了研究的进程,还促进了个性化医学的实现,对人类健康和社会发展有着深远影响。 DNA病毒序列测序进化分析原理

点击查看全文
推荐文章