首页 >  医药健康 >  陕西制备超声微泡

陕西制备超声微泡

关键词: 陕西制备超声微泡 超声微泡

2024.09.26

文章来源:

纳米微泡的直径通常在150-500纳米之间,是***药物分布的诱人场景,并且与微泡相比,已证明可以改善**聚集和保留。近年来,纳米微泡表现出优异的稳定性,这增加了它们在各种生物医学应用中的应用。纳米微泡提供超声影像的对比度增强,因此具有***的诊断应用潜力。此外,它们也被用于药物、核酸和气体的传输。纳米微泡可以被认为是另一种提高体内运送效率的US敏感纳米载体。纳米微泡它们可以通过增加的滞留和渗透性效应在**组织内积累,可以通过靶向,也可以通过在其表面附着抗体。与US联合使用时,纳米微泡可用于改善药物在靶组织中的选择性分布。它们可用于US诱导的声纳穿孔,作为***性空化核,诱导细胞膜形成暂时性的孔,以改变细胞的通透性。因此,纳米微泡可以与药物一起使用,或者药物可以并入纳米微泡壳内,作为US介导的货物来促进产品在细胞内的摄取。超声联合纳米微泡递送RNA。陕西制备超声微泡

陕西制备超声微泡,超声微泡

超声微泡可以通过各种制造方法来制造,这些方法已经被引入和优化,以获得可复制的尺寸,生物相容性,生物降解性和高成像稳定性的回声特性。MNB的制造过程必须注重生物相容性和安全性,以免在体外和体内阶段测试时产生毒性。在制造阶段,涂层配方将决定寿命,对刺激(如超声波)的响应,并影响超声微泡的自组装尺寸。药物装载有几种策略,例如将药物和气体封装在**内,将药物同化到**和外壳之间的层中,以及利用静电相互作用。表面活性剂的加入,如Tween,可以维持超声微泡的稳定性,防止超声微泡携带的药物聚结。另一种药物装载方法是通过应用静电相互作用来帮助配体附着在超声微泡外壳或基因递送上。用超声微泡递送核酸也有助于延长其在血液中的循环时间,防止核酸的降解,并增强靶向药物递送的功效。为了获得如上所述的所需体系,可以使用一些技术来生产超声微泡,即超声、乳化、机械搅拌、激光烧蚀、喷墨和逐层法。陕西制备超声微泡通过超声微泡诱导空化可以改变血管和细胞膜的通透性。

陕西制备超声微泡,超声微泡

    纳米微泡比超声微泡具有更好的被动瞄准能力,因为纳米微泡的尺寸小于1µm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内。超声微泡中使用的原料或外壳配方会影响表面电荷性质,同时颗粒大小决定了超声微泡在体内的分布。超声微泡的分布特性影响成像诊断的成功及其通过被动和主动靶向给药的有效性“被动靶向”一词指的是增强的per-merabilityretention(EPR)效应,该效应驱动无特异性靶向的裸超声微泡到达病变目标。然而,裸超声微泡通常在静脉注射后10分钟内被吞噬进入网状上皮系统(RES)与***中的内皮功能障碍相关,内膜微血管渗漏可以作为针对***斑块的药物递送的被动靶向途径。因此,纳米微泡比超声微泡具有更好的被动瞄准能力,因为纳米微泡的尺寸小于1µm;因此,它们可以通过EPR效应渗透到血管壁并积聚在斑块内然而,纳米微泡的缺点是无法获得高质量的超声成像因为小尺寸的气泡会降低声响应制备成像用纳米微泡的策略之一是调整和修改纳米微泡的壳体组成,以增加其回波性由于EPR效应与尺寸有关,研究人员在制造100-200nm左右的小尺寸纳米微泡方面存在困难目前的研究表明,与小于50nm和大于300nm的颗粒相比,100-200nm之间的颗粒尺寸在病变部位的蓄积更大。

超声微泡的粒径大小直接影响微泡的动物的体内渗透和代谢。首先,与传统药物相比,超声造影剂微泡相对较大。微泡的直径一般为1-10um。**血管特别具有渗透性,通常有较大的内皮间隙;然而,造影剂微泡通常太大而无法脱离脉管系统。在Wheatley等人**近的一篇文章中,描述了一种纳米颗粒超声造影剂(直径450nm)具有良好的声学性能。该造影剂在实验家兔中产生了良好的肾脏混浊。南京星叶生物也有500nm左右的超声微泡造影剂。虽然超声造影剂的循环时间在过去几年有所增加,但这也是超声绐药时需要关注的问题。例如,索诺维的消除半衰期为6分钟。Albunex的摄取发生在大鼠和猪的肝脏、肺和脾脏,70%在3分钟内从血液中***。如果药物被网状内皮系统从循环中取出,则循环时间可能不够长,无法将更多的药物递送到目标区域。造影剂通常被注入外周静脉,因此在一个给定的循环周期中,只有少量的造影剂会通过**。为了破坏足够的造影剂以***增加局部浓度,必须进行多次循环。聚合物壳剂可**增加循环时间。虽然超声微泡是相对较大的药物,但可以附着在气泡表面或纳入内部脂质层的药物量是一个问题。超声微泡作为纳米医学,在医学领域的诊断方面具有多方面的优势。

陕西制备超声微泡,超声微泡

组织中的微泡检测可以利用超声介导的微泡破坏。超声压力通常以机械指数(MI)的形式出现在医学成像系统的屏幕上,一个相对商,计算为峰值负声压除以频率的平方根。非线性微泡行为一般在声压较高时表现得更明显(例如MI 0.2)。在某些系统中,它可能是检测到的***机会,例如,较小的微泡。在更高的压力下(MI 0.4和高达1-1.9,取决于频率),微泡被破坏,它们的声学后向散射信号完全消失,这可以提供额外的证据,证明目标造影剂存在于组织中。一些气泡壳(通常是那些涂有薄脂质单层的)是柔韧性的,即使在低压超声(例如MI 0.06)下也会振动。对于厚壳聚合物气泡,除非达到临界压力并且外壳破裂,否则微泡不会振动,并且声回波响应仍然很低。对于壳较厚的气泡,从气泡中产生回声的临界声能更高。南京星叶生物研发的超声微泡造影剂是有脂质外壳包裹全氟丙烷惰性气体组成,平均尺寸约为500-700nm。陕西制备超声微泡

过程是利用MNB造影剂与超声联合产生空化效应,以破坏纤维蛋白网。陕西制备超声微泡

微泡的制造通常通过两种通用技术来进行:分散气体颗粒的自组装稳定,以及芯萃取的双乳液制备。第一种技术用于脂质或蛋白质基气泡。气体(溶解度低的空气或氟化气体)分散在含有脂质或表面活性剂胶束混合物或经超声变性的蛋白质的水介质中。这些成分沉积在气液界面上,使其稳定下来。有些微泡制剂在水相中保存数月仍能保持稳定。或者,微泡可以快速冷冻和冻干,以便在干燥状态下延长储存时间。水的加入导致微泡水分散体在使用前立即发生重组。聚合微泡是通过双乳液水-油-水技术制备的,该技术通过高剪切混合或超声在水相中产生有机溶剂微粒。有机“油”溶胶喷口含有溶解的可生物降解聚合物(如聚乳酸-共乙醇酸),以及内部水相的微滴或纳米滴。然后对颗粒进行冻干或喷雾干燥。有机溶剂和水被除去,留下一个内部有空隙的聚合物外壳。通常,加入挥发性化合物,如碳酸氢铵、碳氢化合物、氟碳化合物或樟脑,以帮助在颗粒中产生空心**。这类颗粒在干燥状态下储存时非常稳定。它们在水或生物介质中缓慢水解,形成乳酸和乙醇酸,具有完全的生物相容性。颗粒的壳厚和核大小可以通过聚合物、有机溶剂、内部水和成孔化合物的浓度和比例来控制。陕西制备超声微泡

点击查看全文
推荐文章