首页 >  仪器仪表 >  北京全场非接触应变测量装置

北京全场非接触应变测量装置

关键词: 北京全场非接触应变测量装置 光学非接触应变测量

2024.10.19

文章来源:

    建筑物变形测量是确保建筑安全的重要环节,而基准点的设置则是这一过程中的中心要素。为了确保基准点的稳定性和长期有效性,必须精心选择其设置位置。要远离可能影响其稳定性的因素,如茂盛的植被和高压电线,这样可以较大限度地减少外部因素对基准点的干扰。在选择好位置后,还需采取实际的措施来加固基准点。一种有效的方法是在基准点处埋设标石或标志。这并不是一个随意的过程,而是需要在埋设后给予足够的时间让基准点自然稳定。这个时间的长短应根据具体的地质条件和观测需求来评估,但通常不应少于7天。除了初次设置时的观测,后续的定期检测也是确保基准点稳定性的关键。建筑施工阶段,建议每隔1-2个月就进行一次复测,以及时捕捉任何可能的变动。施工结束后,频率可以适当降低,但每季度或每半年的复测仍然是必要的。如果发现基准点有变动的迹象,应立即进行复测以验证结果的准确性。这样做可以迅速应对可能出现的问题,确保变形测量的精确性。总的来说,正确设置和管理建筑物变形测量的基准点是至关重要的。通过遵循这些建议,我们可以确保基准点的稳定性和测量结果的准确性,从而为建筑变形监测提供强有力的数据支撑,为建筑安全提供坚实保障。 通过光纤光栅传感器或激光干涉仪,光学非接触应变测量能准确捕捉材料表面的微小位移或形变。北京全场非接触应变测量装置

北京全场非接触应变测量装置,光学非接触应变测量

    刻写在光纤上的光栅传感器自身抗剪能力很差,在应变测量的应用中,需要根据实际需要开发相应的封装来适应不同的基体结构,通常采用直接埋入式、封装后表贴式、直接表贴等方式。埋入式一般是将光纤光栅用金属或其他材料封装成传感器后,将其预埋进混凝土等结构中进行应变测量,如桥梁、楼宇、大坝等。但在已有的结构上进行监测只能进行表贴,如现役飞机的载荷谱监测等。无论是哪种封装形式,由于材料的弹性模量以及粘帖工艺的不同,在应变传递过程必将造成应变传递损耗,光纤光栅所测得的的应变与基体实际应变不一致。 新疆VIC-2D数字图像相关应变与运动测量系统光学非接触应变测量利用光学原理,无需接触被测物体,避免传统方法的干扰和损伤。

北京全场非接触应变测量装置,光学非接触应变测量

    芯片研发制造过程链条漫长,很多重要工艺环节需进行精密检测以确保良率,降低生产成本。提高制造控制工艺,并通过不断研发迭代和测试,才能制造性能更优异的芯片,走向市场并逐渐应用到生活和工作的方方面面。由于芯片尺寸小,在温度循环下的应力,传统测试方法难以获取;高精度三维显微应变测量技术的发展,打破了原先在微观尺寸测量领域的限制,特别是在半导体材料、芯片结构变化细微的测量条件下,三维应变测量技术分析尤为重要。

    钢材性能检测中的应变测量技术,对于识别裂纹、孔洞以及夹渣等问题具有关键意义。这些缺陷都会对钢材的强度和韧性造成不良影响。特别是裂纹,它的存在和扩展可以通过应变计等设备进行精确检测,从而为评估钢材的可靠性和预计使用寿命提供重要依据。另一方面,钢材中的孔洞,无论是空洞还是气泡,都会对材料的强度和承载能力产生负面影响。应变测量技术能够通过捕捉孔洞周围的应变变化,为我们提供关于孔洞大小和分布情况的详细信息,进而帮助我们判断钢材的质量和可用性。此外,夹渣作为钢材中的杂质或残留物,也是影响钢材力学性能和耐腐蚀性的重要因素。通过应变测量技术,我们能够检测到夹渣周围的应变变化,从而评估夹渣的分布情况和影响程度,为钢材的质量和可靠性提供有力判断依据。焊缝的检测也是钢材评估的重要环节,主要涉及到夹渣、气泡、咬边、烧穿、漏焊、未焊透以及焊脚尺寸不足等问题。这些缺陷都会严重影响焊缝的强度和密封性,进而影响钢材的整体性能。应变测量技术在这里同样发挥重要作用,通过对焊缝周围应变变化的精确测量,我们可以有效识别和评估这些缺陷,确保钢材的质量和安全性。 光学技术的进步将提升该测量的精度和应用范围,实现多维度、高精度的应变测量。

北京全场非接触应变测量装置,光学非接触应变测量

    在应变测量时,根据所使用的应变片的数量和测量目的,可以使用各种连接方法。在四分之一桥方法中,较多使用3线式连接来消除温度变化对导线电阻的影响。但是,导线电阻相关的灵敏系数修正以及连接部分的接触电阻变化等会产生测量误差。因此,开发出了的独特的1计4线应变测量法,省去了根据导线电阻校正灵敏系数的需要,消除了由接触电阻引起的测量误差。在温度恒定的条件,即使被测构件未承受应力,应变计的指示应变也会随着时间的增加而逐渐变化,即零点漂移(零漂)。 光学非接触应变测量技术,无需安装应变计,节省时间和资源,减少复杂性和干扰因素。湖南VIC-Gauge 3D视频引伸计应变测量系统

光学非接触应变测量技术为变压器绕组检测提供了新的解决方案,实现了快速、准确且无损的测量。北京全场非接触应变测量装置

    在材料科学的研究中,三维应变测量技术已成为一个不可或缺的工具。其独特之处在于,它运用了一个可移动的非接触式测量头,这使得该技术能在各种测量环境下灵活应用,无论是静态、动态、高速还是高温环境,都不在话下。更值得一提的是,它能详尽无遗地探测材料的复杂属性。与传统的应变计测量方法相比,三维应变测量技术所获取的数据信息更为丰富和详尽,这为数字仿真提供了更为细致入微的对比和评估材料。特别是在弹性塑性材料等特殊领域里,它的表现尤为出色。光学三维测量技术则是集光、电、计算机等技术之大成者,具有非接触性、无破坏性、高精度和高分辨率以及快速测量的特点。它运用光学传感器和相机等设备,能够实时捕获材料表面的形变信息,并将这些信息转化为数字化的三维应变数据。在材料的力学实验中,三维应变测量技术同样能大显身手。无论是杯突实验、抗拉实验、拉弯实验还是剪切实验,它都能轻松应对。通过对材料在不同加载条件下的应变分布进行测量,科学家们能更深入地了解材料的力学性能和变形行为。这些数据对于材料的设计和优化具有无可估量的价值。 北京全场非接触应变测量装置

点击查看全文
推荐文章