首页 >  办公、文教 >  巴中公立 数学教学教具

巴中公立 数学教学教具

关键词: 巴中公立 数学教学教具 数学教学教具

2025.01.15

文章来源:

数学知识具有很强的抽象性,很多概念、公式和定理对于初学者来说难以直观地理解。而教具的使用,可以将这些抽象的知识转化为具体的、可见的形式,从而增强学生的直观感受,降低学习难度。例如,在几何教学中,教师可以使用各种几何模型来帮助学生理解几何图形的性质。通过观察和操作这些模型,学生可以直观地感受到点、线、面之间的关系,理解各种几何图形的特征。此外,在数学概念的教学中,教具也可以发挥重要作用。比如,在教学分数的概念时,教师可以使用分数块、分数圈等教具来帮助学生理解分数的含义和运算方法。不同类型的数学教学教具适用于不同的教学内容。巴中公立 数学教学教具

巴中公立 数学教学教具,数学教学教具

数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数绵阳数学教学教具方案利用数学教学教具进行演示,增强教学的直观性。

巴中公立 数学教学教具,数学教学教具

5、三角形(s:面积a:底h:高)面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah7、梯形(s:面积a:上底b:下底h:高)面积=(上底+下底)×高÷2s=(a+b)×h÷28、圆形(S:面积C:周长лd=直径r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:底面半径)体积=底面积×高÷3

幻灯片是一种常见的教学辅助工具,它可以帮助教师将教学内容以图形化的方式呈现给学生。幻灯片的优点是可以使教学内容更加生动、形象,吸引学生的注意力,提高学生的学习兴趣。但是,幻灯片也有一些缺点,比如过度依赖幻灯片会让教师忽略与学生的互动,导致教学效果不佳;另外,幻灯片的制作需要一定的技术和时间成本,如果制作不当,会影响教学效果。

数学游戏:

数学游戏是一种常见的数学教学教具,它可以帮助学生在游戏中学习数学知识。数学游戏的优点是可以增加学生的学习兴趣,提高学生的学习积极性,同时也可以帮助学生巩固数学知识。但是,数学游戏也有一些缺点,比如游戏过于简单或者过于复杂,会影响学生的学习效果;另外,如果游戏与教学内容脱离太远,也会影响教学效果。 制作简单的数学教学教具也能发挥很大的作用。

巴中公立 数学教学教具,数学教学教具

利用直观教学,培养学生的观察能力和思维能力。

观察是正确思维的前提,通过观察可使学生由感性认识上升到理性认识。在数学教学中如果能充分运用直观教具进行演示操作,让学生用眼看、用手摸、用心想。这样学生通过观察、分析、综合、比较、分类等思维活动就会掌握知识的本质特征和内在联系。例如:在讲“三角形的内角和等于180度”时如果让学生用量角器去量三个内角的度数则太繁琐也不易得出结果而且也不易验证其结果的准确性。如果用教具演示就容易多了:让一个三角形模型的两内角拼成一个平角(即180度),那么第三个内角必须是平角(180度)减去另两个内角的和了。这样通过演示操作学生就很容易理解和掌握“三角形的内角和等于180度”这个定理了。 数学教学教具的便携性方便了教师在不同场合进行教学。重庆中学数学教学教具

数学教学教具使复杂的数学问题简单化。巴中公立 数学教学教具

基础数学也叫纯粹数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个***特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式数学可以分成两大类:一类叫纯粹数学;一类叫应用数学。数学的***大类。它按照数学内部的需要,或未来可能的应用,对数学结构本身的内在规律进行研究,而并不要求同解决其他学科的实际问题有直接的联系。数学的第二大类。它着重应用数学工具去解决工作、生活中的实际问题。在解决问题的过程中,所用的数学工具就是基础数学。我们把从小学到大学所学的数学学科称之为基础数学。数学本就是基础学科,基础数学更是基础中的基础。它的研究领域宽泛,理论性强。主要是指几何、代数(包括数论)、拓扑、分析、方程学以及在此基础上发展起来的一些数学分支学科,具体的分支方向包括:射影微分几何、黎曼几何、整体微分几何、调和分析及其应用、小波分析、偏微分方程、应用微分方程、代数学等。巴中公立 数学教学教具

点击查看全文
推荐文章