首页 >  电子元器 >  深圳龙华刻蚀硅材料

深圳龙华刻蚀硅材料

关键词: 深圳龙华刻蚀硅材料 材料刻蚀

2025.10.29

文章来源:

TSV制程是目前半导体制造业中为先进的技术之一,已经应用于很多产品生产。例如:CMOS图像传感器(CIS):通过使用TSV作为互连方式,可以实现背照式图像传感器(BSI)的设计,提高图像质量和感光效率;三维封装(3Dpackage):通过使用TSV作为垂直互连方式,可以实现不同功能和材料的芯片堆叠,提高系统性能和集成度;高带宽存储器(HBM):通过使用TSV作为内存模块之间的互连方式,可以实现高密度、高速度、低功耗的存储器解决方案。深硅刻蚀设备在生物医学领域也有着重要的应用,主要用于制造生物芯片、微针、微梳等。深圳龙华刻蚀硅材料

深圳龙华刻蚀硅材料,材料刻蚀

深硅刻蚀通是MEMS器件中重要的一环,其中使用较广的是Bosch工艺,Bosch工艺的基本原理是在刻蚀腔体内循环通入SF6和C4F8气体,SF6在工艺中作为刻蚀气体,C4F8作为保护气体,C4F8在腔体内被激发会生成CF2-CF2高分子薄膜沉积在刻蚀区域,在SF6和RFPower的共同作用下,底部的刻蚀速率高于侧壁,从而对侧壁形成保护,这样便能实现高深宽比的硅刻蚀,通常深宽比能达到40:1。离子束蚀刻 (Ion beam etch) 是一种物理干法蚀刻工艺。由此,氩离子以约1至3keV的离子束辐射到表面上。南通反应离子束刻蚀硅湿法刻蚀相对于干法刻蚀是一种相对简单且成本较低的方法,通常在室温下使用液体刻蚀介质进行。

深圳龙华刻蚀硅材料,材料刻蚀

深硅刻蚀设备在微电子机械系统(MEMS)领域也有着广泛的应用,主要用于制作微流体器件、图像传感器、微针、微模具等。MEMS是一种利用微纳米技术制造出具有机械、电子、光学、热学、化学等功能的微型器件,它可以实现传感、控制、驱动、处理等多种功能,广泛应用于医疗、生物、环境、通信、能源等领域。MEMS的制作需要使用深硅刻蚀设备,在硅片上开出深度和高方面比的沟槽或孔,形成MEMS的结构层,然后通过键合或释放等工艺,完成MEMS的封装或悬浮。MEMS结构对深硅刻蚀设备提出了较高的刻蚀精度和均匀性的要求,同时也需要考虑刻蚀剖面和形状的可控性和多样性。

刻蚀是利用化学或者物理的方法将晶圆表面附着的不必要的材料进行去除的过程。刻蚀工艺可分为干法刻蚀和湿法刻蚀。目前应用主要以干法刻蚀为主,市场占比90%以上。湿法刻蚀在小尺寸及复杂结构应用中具有局限性,目前主要用于干法刻蚀后残留物的清洗。其中湿法刻蚀可分为化学刻蚀和电解刻蚀。根据作用原理,干法刻蚀可分为物理刻蚀(离子铣刻蚀)和化学刻蚀(等离子体刻蚀)。根据被刻蚀的材料类型,干刻蚀可以分为金属刻蚀、介质刻蚀与硅刻蚀。三五族材料刻蚀常用的掩膜材料有光刻胶、金属、氧化物、氮化物等。

深圳龙华刻蚀硅材料,材料刻蚀

电容耦合等离子体刻蚀(CCP)是通过匹配器和隔直电容把射频电压加到两块平行平板电极上进行放电而生成的,两个电极和等离子体构成一个等效电容器。这种放电是靠欧姆加热和鞘层加热机制来维持的。由于射频电压的引入,将在两电极附近形成一个电容性鞘层,而且鞘层的边界是快速振荡的。当电子运动到鞘层边界时,将被这种快速移动的鞘层反射而获得能量。电容耦合等离子体刻蚀常用于刻蚀电介质等化学键能较大的材料,刻蚀速率较慢。电感耦合等离子体刻蚀(ICP)的原理,是交流电流通过线圈产生诱导磁场,诱导磁场产生诱导电场,反应腔中的电子在诱导电场中加速产生等离子体。通过这种方式产生的离子化率高,但是离子团均一性差,常用于刻蚀硅,金属等化学键能较小的材料。电感耦合等离子体刻蚀设备可以做到电场在水平和垂直方向上的控制,可以做到真正意义上的De-couple,控制plasma密度以及轰击能量。离子束刻蚀通过创新的深腔加工技术实现MEMS陀螺仪的性能跃升。南通反应离子束刻蚀

随着生物医学领域对硅的不断提高,深硅刻蚀设备也需要不断地进行创新和改进。深圳龙华刻蚀硅材料

干法刻蚀设备根据不同的等离子体激发方式和刻蚀机理,可以分为以下几种工艺类型:一是反应离子刻蚀(RIE),该类型是指利用射频(RF)电源产生平行于电极平面的电场,从而激发出具有较高能量和方向性的离子束,并与自由基共同作用于样品表面进行刻蚀。RIE类型具有较高的方向性和选择性,但由于离子束对样品表面造成较大的物理损伤和加热效应,导致刻蚀速率较低、均匀性较差、荷载效应较大等缺点;二是感应耦合等离子体刻蚀(ICP),该类型是指利用射频(RF)电源产生垂直于电极平面的电场,并通过感应线圈或天线将电场耦合到反应室内部,从而激发出具有较高密度和均匀性的等离子体,并通过另一个射频(RF)电源控制样品表面的偏置电压,从而调节离子束的能量和方向性,并与自由基共同作用于样品表面进行刻蚀。深圳龙华刻蚀硅材料

点击查看全文
推荐文章