首页 >  电子元器 >  CAK36-35V-16000uF-K-C5T

CAK36-35V-16000uF-K-C5T

关键词: CAK36-35V-16000uF-K-C5T 钽电容

2025.12.09

文章来源:

KEMET钽电容采用导电聚合物电解质(如聚吡咯),从根源上解决了传统二氧化锰(MnO₂)钽电容的泄漏风险——MnO₂电解质为粉末状,需通过有机黏合剂固定,长期使用中易因振动、温度循环出现缝隙,导致电解液泄漏,引发电路短路;而聚合物电解质为固态薄膜,通过原位聚合工艺紧密附着于电极表面,无流动性,且与电极的结合强度提升60%以上,即使在汽车行驶的剧烈振动(如颠簸路面的10g加速度)下,也不会出现电解质脱落或泄漏。这一特性使其成为汽车驾驶舱安全电路的理想选择:驾驶舱安全电路(如安全气囊控制单元、电子转向助力系统、防抱死制动系统(ABS))对元件安全性要求极高,一旦电容泄漏导致电路失效,可能引发安全事故。KEMET这款钽电容不仅通过AEC-Q200车规测试(包含温度循环、湿度、振动、机械冲击等22项测试),还针对驾驶舱环境优化设计——在-40℃至+85℃的驾驶舱温度范围内,其ESR波动<25%,容值稳定性<±6%,可确保安全电路在各种工况下精细响应,例如在紧急制动时,快速为ABS系统提供稳定电源,避免因电容性能波动导致的制动延迟。基美钽电容以高性能著称,覆盖较低 ESR 型产品,且符合 RoHS 等环保法规,绿色制造优势明显。CAK36-35V-16000uF-K-C5T

CAK36-35V-16000uF-K-C5T,钽电容

AVX钽电容在5G基站、医疗设备等领域展现出优良性能,成为关键电子元器件的选择。5G基站运行时需处理大量高频信号,对电容的高频稳定性、低损耗特性要求极高;医疗设备则对元器件的可靠性与安全性有严苛标准。AVX钽电容凭借优异的电气性能满足了这些领域的特殊需求,在5G基站的射频前端、电源管理模块中,其稳定的高频性能确保了信号传输质量;在医疗监护仪、诊断设备中,其高可靠性与低漏电流特性保障了设备的精确运行与患者安全。此外,AVX针对不同领域需求提供定制化解决方案,通过严格的质量管控体系,确保每一款产品都能在领域的复杂环境中稳定发挥性能。THC-150V-110uF-K-C2TAVX 钽电容的模块化解决方案,能简化电路布局,在新能源和自动化控制系统中表现突出。

CAK36-35V-16000uF-K-C5T,钽电容

AVX钽电容TCJ系列采用兼容EIA标准的封装,EIA标准是电子元件封装的国际通用标准,确保TCJ系列可与全球主流的SMT(表面贴装技术)生产线兼容,无需调整贴装设备参数,降低企业的生产切换成本。其主要的优势在于高频下的容量稳定性:在1MHz高频环境中,容量衰减率<10%,远优于传统钽电容(高频下容量衰减率通常>20%)——射频电路(如手机射频模块、基站天线电路)的工作频率通常在几百MHz至几GHz,高频下容值衰减会导致电路匹配失衡,影响信号传输效率。TCJ系列通过优化电极结构(采用薄型钽阳极与多层聚合物阴极),减少高频下的寄生电感与电容,确保容值稳定性。例如,在5G基站的射频功率放大器中,TCJ系列可通过高频容量稳定性,维持放大器的输出功率(衰减率<3%),避免因容值衰减导致的信号失真;同时,兼容EIA封装可提高SMT生产线的贴装效率,降低基站设备的制造成本。

CAK55F钽电容采用金属外壳密封设计,外壳材质为耐腐蚀的镍铜合金,通过电阻焊接工艺与陶瓷绝缘子结合,实现IP67级防护(完全防尘,可短时间浸水),彻底隔绝外界湿气、灰尘与腐蚀性气体。在高湿环境(如95%RH、40℃)中,传统环氧树脂封装钽电容易因湿气渗透导致内部电极氧化,容值漂移率可达18%以上,漏电流增至初始值的3倍;而CAK55F钽电容在相同环境下工作1000小时后,容值变化率<5%,漏电流变化率<7%,完全满足潮湿环境的使用需求。例如,在海洋探测设备(如水下机器人、海洋气象浮标)中,设备需长期浸泡在高盐雾、高湿的海水环境中,CAK55F的金属外壳可抵御海水腐蚀,避免电容失效导致的探测数据丢失;在食品加工车间(如面包厂、饮料厂),高湿环境易导致电路受潮,CAK55F可通过高湿稳定性,确保设备的控制电路(如温度控制器、输送带电机控制)稳定工作,减少因电容故障导致的生产中断。KEMET 与 AVX 钽电容分别深耕工控和汽车电子赛道,为不同场景提供定制化电容解决方案。

CAK36-35V-16000uF-K-C5T,钽电容

KEMET钽电容的车规级型号严格符合AEC-Q200标准,该标准是汽车电子元件的主要可靠性标准,包含7大测试类别(温度循环、高温存储、低温存储、湿度循环、振动、机械冲击、稳态湿热),其中温度循环测试需经历-55℃至+125℃的1000次循环,高温存储测试需在150℃下放置1000小时,确保元件在汽车全生命周期(通常8-10年)内稳定工作。其平均无故障时间(MTBF)超10万小时,意味着在车载环境中,每1000个元件每年的故障数<0.87个,远低于汽车电子“每1000个元件每年故障数<5个”的行业要求。这一特性使其完美适配车载ECU(电子控制单元)——ECU是汽车的“大脑”,负责发动机控制、变速箱控制、车身电子稳定等主要功能,对元件可靠性要求极高。例如,在发动机ECU中,KEMET车规级钽电容可通过高温稳定性(发动机舱温度可达120℃),避免因电容失效导致的发动机怠速不稳、油耗升高;同时,低ESR(典型值35mΩ)可减少ECU电源模块的发热,提升ECU的运算效率,确保发动机控制指令的精确执行。CAK72 钽电容继承 AVX 高可靠性基因,在工业 PLC 中可通过去耦功能减少电源噪声,保障信号稳定。THC-150V-110uF-K-C2T

KEMET 钽电容电容密度达每立方厘米数千微法,助力智能穿戴设备小型化设计。CAK36-35V-16000uF-K-C5T

体积能量密度是衡量电容小型化能力的关键指标,指单位体积内可储存的电能,钽电容在这一指标上表现突出,其体积能量密度可达300-500mWh/cm³,而直插电解电容因采用铝箔电极和液态电解液,体积能量密度只为100-200mWh/cm³,前者是后者的2-3倍。这一差异源于两者的电极结构:钽电容通过烧结钽粉形成多孔阳极,极大增加了电极表面积,在有限体积内实现了更高的容量;而直插电解电容采用平板铝箔电极,表面积有限,需更大体积才能达到相同容量。在便携式电子设备领域,如智能手机、智能手环、无线耳机等,内部空间极为狭小,需在有限空间内集成屏幕、电池、芯片、传感器等大量元器件,对电容的体积要求极为苛刻。若使用体积能量密度低的直插电解电容,为达到所需容量,电容体积会大幅增加,挤占其他元器件的安装空间,导致设备无法实现轻薄化设计;而钽电容凭借高体积能量密度,在提供相同容量的前提,体积只为直插电解电容的1/3-1/2,为便携式设备的小型化、轻薄化设计提供了关键支持,助力设备在有限空间内实现更多功能,提升用户体验。CAK36-35V-16000uF-K-C5T

点击查看全文
推荐文章